Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(C-rac-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetra-decane- $\kappa^{4} N$)(nicotinato- O, O^{\prime})nickel(II) perchlorate

Elena V. Basiuk, ${ }^{\text {a }}$ V Vladimir A. Basiuk, ${ }^{\text {b }}$ Simón HernándezOrtega, ${ }^{\text {c }}$ Marcos Martínez-García ${ }^{\text {c }}$ and José-Manuel Saniger-Blesa ${ }^{\text {a }}$
${ }^{\text {a }}$ Centro de Instrumentos, Universidad Nacional Autónoma de México, Circuito Exterior CU, 04510 México DF, Mexico, ${ }^{\mathbf{b}}$ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior CU, 04510 México DF, Mexico, and ${ }^{\text {c Instituto de Química, Universidad Nacional Autónoma de México, }}$ Circuito Exterior CU, 04510 México DF, Mexico
Correspondence e-mail: elenagd@servidor.unam.mx

Received 18 October 2000
Accepted 16 February 2001
In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{4}\right)\right] \mathrm{ClO}_{4}$, the macrocyclic unit adopts a folded conformation, allowing the two carboxyl O atoms to occupy two neighbouring coordination sites and thus form an additional four-membered chelate ring. The less crowded side of the macrocycle (that with the two asymmetric $\mathrm{C}-\mathrm{H}$ groups) is directed towards the nicotinate anion and the asymmetric $\mathrm{C}-\mathrm{CH}_{3}$ groups are directed away from it. The macrocyclic NH groups neighbouring the $\mathrm{C}-\mathrm{CH}_{3}$ groups are also directed away from the nicotinate anion, while those NH groups which are near to the geminal methyl groups are directed towards the nicotinate anion. Although the complex does not include water molecules, three types of hydrogen bond were found, involving NH groups of the macrocyclic ligand, pyridine N atoms and O atoms of the perchlorate anions.

Comment

Many $\mathrm{Ni}^{\mathrm{II}}$ complexes with saturated 12- to 16 -membered tetraaza-macrocyclic ligands are known to exist both in a lowspin square-planar tetracoordinated form and in a high-spin octahedral hexacoordinated form (see, for example, Adam et al., 1994, 1996). We are especially interested in the less studied (although known for more than three decades) 'Curtis-type' complexes with the common saturated ligand rac-5,5,7,12,-12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (rac-Me ${ }_{6}$ [14]aneN N_{4}) and carboxylic acids (Basiuk et al., 2000; Curtis, 1964, 1968; Whimp et al., 1970). In these complexes, the macrocyclic unit adopts a folded conformation, allowing the two carboxyl O atoms to occupy two neighbouring coordination sites and thus form a four-membered chelate ring. Until recently, the only known structurally characterized example of complexes of this type was $\left[\mathrm{Ni}^{\mathrm{II}}\left(\right.\right.$ rac- $-\mathrm{Me}_{6}[14]$ ane $\left.\left._{4}\right)\right]$-acetate
monoperchlorate (Whimp et al., 1970); another example is a bridged complex, bis $\left[\mathrm{Ni}^{\mathrm{II}}\left(\mathrm{rac}-\mathrm{Me}_{6}[14]\right.\right.$ ane $\left.\left._{4}\right)\right]-2,5$-pyridinedicarboxylate diperchlorate monohydrate, synthesized and characterized recently by us (Basiuk et al., 2000). In addition, we have undertaken the preparation and X-ray analysis of the 3,5-pyridinedicarboxylic acid analogue of the latter. However, although good quality single crystals were obtained (after many unsuccessful attempts), they appeared to decay before the X-ray diffraction data collected were sufficient for structure solution.

(I)

In the present paper, we report the preparation and X-ray structure determination of another high-spin complex of the above type, namely (C-rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^{4} N$)(nicotinato- O, O^{\prime})nickel(II) perchlorate, (I). As in its acetate and 2,5-pyridinedicarboxylate analogues, the less crowded side of the macrocycle (that with the two asymmetric $\mathrm{C}-\mathrm{H}$ groups) is directed towards the nicotinate anion and the asymmetric $\mathrm{C}-\mathrm{CH}_{3}$ groups are directed away from it. The NH groups of the macrocycle

Figure 1
The molecular structure of (I) drawn with 40% probability displacement ellipsoids. H atoms on C atoms have been omitted and H atoms on N atoms are shown as small spheres of arbitrary radii.
neighbouring the $\mathrm{C}-\mathrm{CH}_{3}$ groups are also directed away from the nicotinate anion, while those NH groups which are near to the geminal methyl groups are directed towards the nicotinate anion.

The macrocyclic units are folded around $\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 8$ [172.24 (13) ${ }^{\circ}$], with an $\mathrm{N} 4-\mathrm{Ni1}-\mathrm{N} 11$ angle of $103.21(13)^{\circ}$. These values are very close to the corresponding parameters for the macrocyclic unit in the bridged complex bis $\left[\mathrm{Ni}^{\mathrm{II}}-\right.$ (rac - $\mathrm{Me}_{6}[14] \mathrm{aneN}_{4}$)]-2,5-pyridinedicarboxylate diperchlorate monohydrate (ca 176 and 103°, respectively; Basiuk et al., 2000). A dissimilarity between the two complexes occurs with the $\mathrm{Ni}-\mathrm{O}$ distances, which are almost equal in the nicotinate [2.153 (3) and 2.156 (3) Å], but noticeably different in the bridged complex [2.123 (12) and 2.255 (13) Å], apparently due to a steric hindrance created by the second macrocyclic moiety. The mean $\mathrm{Ni}-\mathrm{N}$ distance in (I) is $2.12 \AA$, which is typical for an octahedral triplet ground-state $\mathrm{Ni}^{\mathrm{II}}$ atom coordinated to secondary amino groups (Whimp et al., 1970).

Unlike the 2,5-pyridinedicarboxylate compound, and similar to $\left[\mathrm{Ni}^{\mathrm{II}}\left(r a c-\mathrm{Me}_{6}[14] \mathrm{aneN}_{4}\right)\right]$-acetate monoperchlorate (Whimp et al., 1970), complex (I) does not include water molecules. Nevertheless, there are three types of hydrogen bond involving NH groups of the macrocyclic ligand, pyridine N atoms and O atoms of the perchlorate anions (Fig. 2), namely $\mathrm{N} 8-\mathrm{H} 8 \cdots \mathrm{~N} 21, \mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{O} 4$ and $\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{O} 4$, respectively.

Figure 2
The packing diagram for (I).

Experimental

Caution: perchlorate salts of metal complexes are potentially explosive and should be handled with care. Nicotinic acid (Aldrich) was used without further purification. $\left[\mathrm{Ni}^{\mathrm{II}}\left(\mathrm{rac}-\mathrm{Me}_{6}[14] \mathrm{aneN}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was synthesized by complexation of the free ligand with $\mathrm{Ni}^{\mathrm{II}}$ acetate in methanol, followed by the addition of perchloric acid (Curtis, 1964). The title complex was synthesized in a manner similar to that used for the 2,5-pyridinedicarboxylic acid analogue (Basiuk et al., 2000), by dissolving $\left[\mathrm{Ni}^{\mathrm{II}}\left(\mathrm{rac}-\mathrm{Me}_{6}[14] \mathrm{aneN}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}(0.54 \mathrm{~g}$,

1 mmol) and nicotinic acid ($0.25 \mathrm{~g}, 2 \mathrm{mmol}$) in water (100 ml) and adjusting the pH to ca 12 by adding $\mathrm{NH}_{4} \mathrm{OH}$. The solution was heated with stirring until half the solvent had evaporated. Violet-blue crystals of the product were filtered after standing for 2 d at room temperature. Crystals of (I) suitable for X-ray analysis were obtained by recrystallization from methanol.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{4}\right)\right] \mathrm{ClO}_{4}$
$M_{r}=564.75$
Monoclinic, $P 2_{1} / c$
$a=10.474(2) \AA$
$b=13.221(2) \AA$
$c=20.288(3) \AA$
$\beta=91.33(1)^{\circ} \AA$
$V=2808.7(8) \AA^{3}$
$Z=4$
$D_{x}=1.336 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 50
\quad reflections
$\theta=3.9-21.5^{\circ}$
$\mu=0.83 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, violet
$0.36 \times 0.24 \times 0.16 \mathrm{~mm}$

Data collection

Siemens $P 4 / P C$ diffractometer ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.755, T_{\text {max }}=0.879$
5239 measured reflections 4950 independent reflections 2980 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& R_{\text {int }}=0.057 \\
& \theta_{\max }=25^{\circ} \\
& h=0 \rightarrow 12 \\
& k=0 \rightarrow 15 \\
& l=-24 \rightarrow 24 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.025 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.009$
$\Delta \rho_{\text {max }}=0.70 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.35 \mathrm{e}_{\AA^{-3}}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.00184 (16)

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Ni1-N4	$2.097(3)$	Ni1-N1	$2.141(4)$
Ni1-N11	$2.101(3)$	Ni1-O6	$2.153(3)$
Ni1-N8	$2.127(4)$	Ni1-O5	$2.156(3)$
N4-Ni1-N11	$103.21(13)$	N11-Ni1-O5	$157.86(12)$
N4-Ni1-N8	$90.57(14)$	N8-Ni1-O5	$101.28(12)$
N11-Ni1-N8	$85.45(14)$	N1-Ni1-O5	$85.62(13)$
N4-Ni1-N1	$84.92(14)$	O6-Ni1-O5	$61.43(10)$
N11-Ni1-N1	$89.43(14)$	N4-Ni1-C27	$128.25(14)$
N8-Ni1-N1	$172.24(13)$	N11-Ni1-C27	$128.51(13)$
N4-Ni1-O6	$157.85(12)$	N8-Ni1-C27	$94.57(13)$
N11-Ni1-O6	$98.42(12)$	N1-Ni1-C27	$93.17(14)$
N8-Ni1-O6	$86.42(12)$	O6-Ni1-C27	$30.66(12)$
N1-Ni1-O6	$100.11(12)$	O5-Ni1-C27	$30.78(12)$
N4-Ni1-O5	$97.84(12)$		

The positional parameters of the H atoms bonded to N atoms were refined. Other H -atom positions were calculated geometrically and all H atoms were refined as riding, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the attached atom.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N8-H8 $\cdots \mathrm{N} 21^{\mathrm{i}}$	$0.75(4)$	$2.54(5)$	$3.263(5)$	$161(5)$
N4-H4 $\cdots \mathrm{O} 4$	$0.84(4)$	$2.29(5)$	$3.114(6)$	$166(4)$
N11-H11 \cdots O4	$0.86(4)$	$2.26(4)$	$3.064(6)$	$157(4)$

Symmetry code: (i) $1-x,-y,-z$.

Financial support from the National Council of Science and Technology of Mexico (grant CONACYT-25793E) is greatly appreciated.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1165). Services for accessing these data are described at the back of the journal.

References

Adam, K. R., Atkinson, I. M., Antolovich, M., Brigden, L. G. \& Lindoy, L. F. (1994). J. Mol. Struct. 323, 223-231.

Adam, K. R., Atkinson, I. M. \& Lindoy, L. F. (1996). J. Mol. Struct. 384, 183190.

Basiuk, E. V., Basiuk, V. A., Gómez-Lara, J. \& Toscano, R. A. (2000). J. Incl. Phenom. Macrocycl. Chem. 38, 45-56.
Curtis, N. F. (1964). J. Chem. Soc. pp. 2644-2650.
Curtis, N. F. (1968). J. Chem. Soc. A, pp. 1584-1587.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS 97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Whimp, P. O., Bailey, M. F. \& Curtis, N. F. (1970). J. Chem. Soc. A, pp. 19561963.

